

Innovative Medicines Initiative

Stem Cells: A Global Perspective

Ole Isacson, M.D.–Ph.D. Harvard Medical School

Regenerative Medicine:

Regeneration in Planaria – flatworm

- Mechanism of disease
- Drug screening
- Cell therapy

Embryonic Stem Cells

http://learn.genetics.utah.edu/content/tech/s temcells/quickref/isolatingEScells.jpg

Generation of human induced pluripotent stem cells

TRENDS in Molecular Medicine

Davis et al., Trends in Mol Med (2012)

Why are iPS cells so important?

Electrophysiological differences between adult human and mouse Cardiomyocytes

Davis et al., Trends in Mol Med (2012)

Medicines withdrawn from the market due to cardiotoxicity

Drug	Indication	Market span	Reason for withdrawal
Astemizole (Hismanal)	Antihistamine	1983–1999	Withdrawn from the market due to TdP
Cisapride (Propulsid)	Prokinetic	1988–2000	Withdrawn from the market due to TdP
Droperidol	Antipsychotic/antiemetic	1970–2001	Withdrawn from UK market due to TdP
Grepafloxacin	Antibiotic	1997–1999	Withdrawn from the market due to TdP
Levomethadyl	Opioid agonist	1993-2001	Withdrawn from use in EU due to TdP; use restricted in USA
Prenylamine	Anti-anginal	1960s-1988	Withdrawn from the market due to TdP
Rofecoxib (Vioxx)	Non-sterodial	1999–2004	Withdrawn because of risk of myocardial infarction
Centin de la	Antinovabatic	1006 1009	With drown from the market due to TdD
Sertindole	Anupsycholic	1990-1998	withdrawn from the market due to TdP
Terodiline	Bladder incontinence	1986–1991	Withdrawn from the market due to TdP
Tegaserod (Zelnorm)	5-HT₄ agonist	2002-2007	Withdrawn because of imbalance of cardiovascular
			ischaemic events (including heart attack and stroke);
			was available through a restricted access programme until April 2008
Terfenadine (Seldane)	Antihistamine	1982-1997	Withdrawn because of risk of cardiac arrhythmias; superseded by
			Fexofenadine

TdP: Torsade de pointes.

Braam et al., Trends in Pharmacological Sciences (2009)

Human iPS cell derivation, differentiation and applications

Bellin et al., Nature Reviews: Mol Cell Biol (2012)

The global advancement of medical research & treatment

Latest developments in stem cell research

Disease modeling using Alzheimer's disease patient iPSCs

Patient iPSCs would be useful for precision early diagnosis

Background: Parkinson's disease

SNc and VTA relevance to Parkinson's disease

The most vulnerable midbrain DA neuron type (A9) in PD -- allowing basal gangliamovement initiation -- has specific connections, physiology, cell biology and gene expression

1. Cell type specific gene expression of midbrain dopaminergic neurons.. vulnerability and protection. Chung CY et al *Hum. Mol. Genet.* 2005

2. Cell type analysis of functional fetal dopamine cell suspension transplants in patients with Parkinson's disease Mendez I et al *Brain 2005*

Initiation, progression and treatments of midbrain dopaminergic (DA) synaptic and cellular loss in Parkinson's disease

Parkinson's Disease Patients: Causes and diagnostically defined human populations

Pure genetic forms are rare but provide contexts For approaches using PD iPS cells

Goal: Matching high risk individuals by iPS cell-derived cell function analyses and drug responsiveness

els *****

PD patients iPSC derived neural cells: Spontaneous cellular phenotypic changes in dish

Validation and standardization of individuals' PD iPS cells

Cooper et al. Science Translational Medicine, 2012

PDiPSC derived neurons can be used to reveal gene or disease specific cell responses

Sanders L et al, 2013

PD patients iPSC derived neural cells: Cellular phenotypic responses after challenge in dish

PINK1 PD iPS cell-derived neuronal cells produce much higher levels of free-radical species after mitochondrial K+ depolarization than sibling controls

Cooper et al. Science Translational Medicine, 2012

Genetically linked PD Neural cells from iPS cells are more sensitive to cellular mitochondrial stress than fibroblasts

Cooper et al. Science Translational Medicine, 2012

Chemical stressors produce both specific and converging responses from *different* genetic forms of PD

PDiPS Genotype	Chemical stressors of differentiated neural cells (phenotypes)		
PINK1 Q456X	Valinomycin (with increased mROS), MPP+, Concanamycin A, H ₂ O ₂ & MG312		
LRRK2 R1441C	Valinomycin & Concanamycin A		
LRRK2 G2019S	Valinomycin & Concanamycin A		
SNCA Trip.	MPP+ & MG132		

Rescue of PD patient neural cell by antioxidant-like and other drugs

Cooper et al. Science Translational Medicine, 2012

PD patients iPSC derived human neurons transplanted as an in vivo brain assay

Transplanted PDiPSC SNCA3x neurons have reduced neurite extension in brain for the 1st month in vivo

In vitro differentiated then transplanted hPDiPS cells: human specific alpha syn and TH/DA stained after 6 months in vivo

C В h C' B 10um

TH alpha-synuclein

m

Patients iPSC derived cells in a dish: Summary and Outlook

Outlook: iPSC derived neurons can be used to discover cellular pre-symptomatic or pre-disposing neurobiology and neuroprotective treatments

Promises and hurdles in using human iPS cells for disease modeling and drug discovery

- **Controls:** Human induced pluripotent stem (iPS) cells from the same patient can show biological variability
- **Drug discovery and toxicity:** Early risk prediction for new drugs reduces attrition rates and costs
- **Cell-autonomous versus non-cell-autonomous:** Human iPS cells are most suitable for investigating monogenetic diseases with complete penetrance that display cell-autonomous defects on differentiated cells
- **Immaturity of differentiated cells:** Differentiated cells from human pluripotent stem cells are immature
- Effects of genetic and ethnic backgrounds: Many diseases manifest with incomplete penetrance so that patients harbouring the same mutation have different phenotypes
- **Novel biological insights:** A key challenge in human iPS cell biology is to generate new (patho)physiological insights.

Bellin et al., Nature Reviews: Mol Cell Biol (2012)

Neuroregeneration Laboratory

Penny Hallett Teresia Osborn Oliver Cooper Maria Sundberg Jesse McLean Gaynor Smith Emily Mangano Johan Jansson Tristan Lawson Sarah Izen Eduardo Perez-Torres Jon Beagan Hyemyung Seo Michela Deleidi Gunnar Hargus

McLean HOSPITAL

Collaboration

Harvard University

Kevin Eggan

Lee Rubin

Paola Arlotta

U Pittsburgh J. Timothy Greenamyre Laurie Sanders

Parkinson's Institute, CA Birgitt Schuele

NINDS PDiPS Consortium

